Основные принципы и понятия работы с компьютерной графикой
Для того, чтобы работать с Adobe Photoshop не механически, а с пониманием своих действий, пользователь должен иметь некоторые общие (базовые) представления о характеристиках цифровых изображений. Настоящая глава посвящена характеристикам растровых изображений, определяющим его качество. Дело в том, что любое цифровое изображение на компьютере характеризуются набором его таких параметров, как размер, разрешение, формат и тип цветовой модели. Перечисленные параметры и определяют качество растрового изображения, а также размер (вес) графического файла.
Растровые изображения формируется из совокупности крошечных элементов, называемых пикселями. Пиксель является основным кирпичиком растровых изображений и это единица принята в компьютерной графике, подобно тому, как метр, килограмм и литр приняты для измерений в повседневной жизни.
Количество пикселей в изображении определяет его разрешение. Пиксели часто называют точками, тогда разрешение измеряется в dpi (dot per inch), то есть в количестве точек на дюйм.
Примечание
В компьютерной литературе существует путаница в терминах и некоторые из авторов разрешение мониторов измеряют в dpi (dot per inch), сканеров в ppi (pixel per inch) - пиксель на дюйм, а принтеров в lpi (line per inch) - линий на дюйм. Другие же авторы книг разрешение любого изо aliражения, не зависимо от способа его получения измеряют только в dpi.
Если вдуматься, то становится очевидным, что чем выше разрешение, тем большее количество пикселей содержит изображение и тем большим количеством деталей (то есть - качеством) такое изображение характеризуется. С другой стороны, более высокое разрешение изображение прямо связано с большим размером файла такого изображения. Поэтому установка величины разрешения зависит от целей и задач компьютерного художника и для конкретной работы будет разной. Например, веб-дизайнеры обычно работают с изображениями 72-96 dpi, в то время как полиграфисты предпочитают разрешения изображений от 300 dpi и выше (рис. 1.1).
Рис. 1.1. Изображение высокого разрешения слева (файл 977 Кб) и низкого разрешения справа (файл 41 Кб)
В черно-белых изображениях уровни яркости представляются в виде оттенков серого цвета, а в цветных изображениях эти уровни проявляются в виде различных цветовых тонов. При этом очевидно, что черно-белая фотография воспринимается как менее качественная по сравнению с фотографией цветной. Иначе говоря, чем больше оттенков цвета в изображении, тем выше его яркостное (цветовое) разрешение, называемое глубиной цвета, и тем большее число уровней яркости (цветов) будет содержать файл такого изображения.
Новый термин
Глубина цвета характеризует число воспроизводимых градаций яркости пикселя в черно-белых изображениях и количество отображаемых цветов в цветном изображении.
Для примера на рис. 1.2 показано одно и то же изображение, но с разной глубиной цвета: в два цвета сверху, и в 256 оттенков серого снизу. Из этой иллюстрации наглядно видно, что чем выше число воспроизводимых градаций яркости пикселя в черно-белых изображениях (и количество отображолемых цветов в цветном изображении), тем качество растрового изображения выше.
Рис. 1.2. Одно и то же изображение, но с разной глубиной цвета
С точки зрения цветовой глубины растровые изображения можно разбить на несколько типов:
Для монохромного черно-белого (Black and White) изображения используются только два типа ячеек: черные и белые. Поэтому для запоминания каждого пикселя требуется только 1 бит памяти компьютера. Такие изображения часто называются 1-битовыми изображениями. Соответственно, их цветовая разрешающая способность будет равна 1 бит/пиксель.
В другом типе растровых изображений, называемом оттенки серого (Grayscale), на каждый пиксель выделяется до 8 бит информации. Это позволяет оперировать с комбинацией из 256 градаций яркости, перекрывающей весь диапазон оттенков серого от черного до белого. Пример десятиступенчатой шкалы оттенков серого приведен на рис. 1.3.
Рис. 1.3. Десять градаций серого цвета - от белого (100%) до черного (0%)
Для работы с изображениями, описание которых требует большого цветового разрешения, используются цветовые модели RGB, Lab и CMYK. В случае RGB-формата цвет каждого пикселя определяется комбинацией из трех цветов: красного, зеленого и голубого. В зависимости от назначения изображение может иметь 16 битовое, 24 битовое или 32 битовое цветовое разрешение (глубину цвета).
В CMYK-формате цвет каждого пикселя формируется с помощью четырех цветовых каналов: голубого, пурпурного, желтого и черного. Из-за наличия дополнительного канала цветовая модель CMYK содержит примерно на 25 процентов больше информации по сравнению с RGB-изображением.
Если разрешение цифрового изображения, полученного посредством матрицы сканера (или цифровой фотокамеры) совпадает с числом светочувствительных элементов сканера (или камеры), то говорят о фактическом (аппаратном или физическом) разрешении. Однако как в аппаратуре оцифровки изображений, так и в графических программах предусмотрена возможность использования операции интерполяции (Resampling), то есть изменения разрешения, которая может быть реализована разными способами. Например, в программе Adobe Photoshop (рис. 1.4) реализованы три способа интерполяции - по соседним, билинейная и бикубическая.
Рис. 1.4. Способы интерполяции изображений в Adobe Photoshop
При интерполяции по соседним (Nearest Neighbor) для добавляемого программой пикселя берется значение пикселя соседнего с ним. То есть, если соседний пиксель красный, то и программа увеличивает разрешение изображения добавлением красного пикселя.
В случае билинейной (Bilinear) интерполяции графический редактор берет среднее цветовое значение пикселов с каждой стороны от вновь создаваемого. Например, между красным и белым цветом появится розовый.
Бикубическая (Bicubic) интерполяция усредняется значение группы не только непосредственно граничащих, но и всех соседних пикселов. Какой диапазон пикселов выбирается для усреднения и по какому алгоритму это усреднение происходит - этим отличаются способы бикубической интерполяции. На иллюстрации выше мы видим три варианта бикубической интерполяции в Adobe Photoshop.
Примечание
Разрешение изображения, полученное с помощью программной интерполяции всегда хуже реального (физического) разрешения, так как искусственное добавление пикселей снижает качество изображения (происходит потеря мелких его деталей). Иначе говоря, чем сильнее трансформируется изображение, тем больше оно деградирует.
Способ организации информации в графическом файле носит название его формата. Наряду с разрешением, формат файла также имеет отношение к качеству цифрового изображения. Поэтому знание файловых форматов и их возможностей является одним из важных моментов работы с компьютерной графикой в любом из ее направлений.
Все множество форматов, используемых для записи изображений, можно условно разделить на две категории:
• хранящие изображение в растровом виде (BMP, TIFF, PSD, JPEG, PNG, GIF);
• хранящие изображение в векторном виде (WMF, EPS, CDR, AI и другие).
Какому формату отдать предпочтение? Все зависит от ваших целей и задач. Самая общая рекомендация заключается в том, что лучше сохранять результаты работы в формате, который является родным для используемой вами программы. Например, в Photoshop это *.PSD, а в CorelDRAW это *.CDR.
Комментариев нет:
Отправить комментарий